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Error threshold in optimal coding, numerical criteria, and classes of universalities for complexity

David B. Saakiah
Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan
and Yerevan Physics Institute, Alikhanian Brothers Street 2, Yerevan 375036, Armenia
(Received 9 March 2004; revised manuscript received 17 June 2004; published 19 January 2005

The free energy of the random energy model at the transition point between the ferromagnetic and spin glass
phases is calculated. At this point, equivalent to the decoding error threshold in optimal codes, the free energy
has finite size corrections proportional to the square root of the number of degrees. The response of the
magnetization to an external ferromagnetic phase is maximal at values of magnetization equal to one-half. We
give several criteria of complexity and define different universality classes. According to our classification, at
the lowest class of complexity are random graphs, Markov models, and hidden Markov models. At the next
level is the Sherrington-Kirkpatrick spin glass, connected to neuron-network models. On a higher level are
critical theories, the spin glass phase of the random energy model, percolation, and self-organized criticality.
The top level class involves highly optimized tolerance design, error thresholds in optimal coding, language,
and, maybe, financial markets. Living systems are also related to the last class. The concept of antiresonance
is suggested for complex systems.
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[. INTRODUCTION We assume the following picture of complex phenomena.
The following hierarchy is presented: instead of the micro-
scopic motion of molecules or spins we deal with the mac-
The definition of statistical complexity is an entirely open roscopic thermodynamic variables. In addition, some further
problem in statistical mechani¢see([1,2] for an introduc-  structures arose, sometimes proportional to the number of
tion to the problem anfB] for a recent discussionThere are  fractional degrees of the particles. One can understand quali-
a lot of different definitions having sometimes a commontatively the complexity as a measure of the additional struc-
context. A certain success was the discovery of the idea dlres. We are not going to scrutinize the concrete features of
the “schema,” highly compressed information, introduced bythose structures. We will just evaluate the total measure of
Gell-Mann for complex adaptivéwve assume, for all com- the structures on the basis of the free energy expression,
plex) systems. Some attempts, based mainly on entropy coracluding finite size corrections. The suggested complexity
cepts, have been undertaken to define the concept of corf?€asures could be applied to pure systems, as well as to
plexity. The approach4—6] relevant for our investigation is those defined via the disorder ensem(as in spin glassgs
of special interest. A very interesting aspect of complex pheFOr interesting cases of complex adaptive systems, a hierar-
nomena is related to the edge of chdtie border between chy in the definition of the model, either a disorder ensemble
chaotic and deterministic motignthe phase of complex (@S in spin glassgsor the scale of the systerspatial or
scapive sysamiCASS [27) The concept of the edge of =753 sheid be fepresented, The svctres hesehes
[c%ac;i, dlrl]_(:\ig?gr?g]milg r?g'?\?v(;ﬁtggfﬁ é?ﬁﬂlrgﬁgatﬁ/aellj;fﬂ%r\]/v rameters. When those order parameters fluctuate, they can be
P T ’ : . ..handled like microscopic spins or molecules. Therefore, in
ever, it is widely accepted that this concept is connected wit

: . . L uch cases, including the optimal coding of the article, we
the sandpilg 10]. This concept is of special importance due .o, jgentify complex phenomena as a situation with chang-
to its possible relation to the creation of life and evolution

X , ‘ ) ing reality or creation of new realitythe thermodynamic
[7]. This paper is devoted to relations between this phenonye ity is 2 mapping of molecular motions into a few thermo-

enon and some aspects of information theory and optimglynamic variables A good analogy is the weak interaction
coding [11]. We assume that the definition of a sind® i high energy physics on different scales. On the level of

bes) complexity measure is a subjective one, even with thqg,, energies it can be described through a simple picture by
reasonable constraint that complexity should vanish for topemi. However. on the level of 100 GeV. when broken sym-

tally ordered or disordered motidsee the disputfl2,13). ey is restored, there is an absolutely different reality.

More strict is the definition of different universality classes . approach(to investigate just the ensemble averaged
of complexity, which is presented in this paper. We suggeSfee energy instead of the logarithm of the number of differ-

several numerical criteria for complex adaptive properties. I, ground states in spin glasgd®)]) is coherent with the

practice we suggest identifying the universality class of comyyeag of JayeneEl14] saying that there is a single probability

plexity from the experimental data and choosing a mode|, hhysics, measurable during observations, and there is no
from the same class to describe the phenomenon. need to fracture it.

We assume that it is proper to define the criteria of com-
plexity via the free energy rather than via the entrgpge
*Electronic address: saakian@jerewan1.yerphi.am the discussion in Sec. )llIn [15] a criterion of complexity,

A. Complexity
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functioning from galaxies and stars to brains and society, has 1+m, 1-my
been suggested: the rate of free energy density change. It is P(m) = T‘S(’/i D+ 2 S +1). 3
an interesting approach, but we prefer to deal with dimen-
sionless criteria. The point that the subdominant free energyhe transmitter introduces additional informatioa > 1),
describes the degree of system complexity has already beamd the receiver must extract useful information. These two
recognized, at least, for two-dimension@D) critical sys- operations are called encoding and decoding. In general,
tems. According td16], the subdominant term is propor- coding is a mapping of the initial message of lenijtbnto a
tional to the conformal chargeffective number of bosonic sequence which has the lengthl, > 1. Thus, encoding is
degrees of freedonWe just suggest applying this criterion done withaN functionsf;=+1. The valuen 1=R, the “rate”
for any system, as one of the complexity criteria. For theof information transmission, characterizes the degree of re-
situation when there is no explicit free ener@ptimal cod- dundancy. Decoding in the general case is the procedure of
ing, sandpiles, etg.one should try to find some equivalent extracting the initial message out of the noisy sequence
statistical mechanical formulation of the theory and investi-(f; 71, ..., f 7))
gate the free energy. In this work we give a derivation of the When is errorless decoding possible? We have a
subdominant free energy for a case related to optimal codingoltzmann-Gibbs-Shannon measure of information for a dis-
and identify the universality class of the error threshold. Wecrete distributionp;:
provide other criteria of complexity and a list of universality
classes. - pInp. (4)

|

B. Optimal coding In the original message any letter +1 carries information In 2.

. . . In case of noise by Eq3) any letter carries the information
Information processing should certainly be a property of y Ed3) any

complex adaptive systems. What can be clarified by statisti- In2-h, (5)
cal physics? The connection of statistical physics to informa-

tion theory is known from the work of Jayenist]. In 1989 1+my 1+my 1-my 1-my
Sourlag17] found a connection of the random energy model h=- ( 5 In 5 + 5 In 5 )

(REM) of a spin glass by Derrid@l8] with an important
branch of Shannon information theory, i.e., optimal codingin the last expression we extracted from In 2 the entropy
theory[11]. In [19] | proved Sourlas’s idea for the principal the distribution by Eq(3).

case of finite velocity codes. An important result has been The encoding can work in different ways. To extract the
derived by Rujan[20] regarding coding by statistical me- original message without error it is reasonable to put the
chanics models at finite temperatures. In a series of worlonstraint

[21-25 we derived the main results of Shannon information

theory using the REM. Those results were repeated by alter- 1+mp 1+4mp 1-mg 1-Mp)

) ; aN{In + In + In =NIn2.

native methods latefsee the reviewW26]). Because we are 2 2 2

going to consider models at the junction of statistical me- (6)
chanics and optimal coding, some features of optimal coding

should be briefly mentionejdL1]. On the left, we have the information of the received message.

Let us consider the transition of information, a sequencédn the right, we have the information to be extracted. This is
of +1, through a noisy channel to a receiver. There existéhe Shannon fundamental theorem for errorless decoding.
original information which is a sequence of +1 andOnly very special coding schemes correspond to the special
-1:¢,...,ey. If we send some letters through the channel,case, when the last expression transforms to an equality.
due to the noise, the letters change their correct values, arfsich codes are optimal ones. They are universal mathemati-
information is partially lost. Therefore, to recover further the cal constructions, like the critical Hamiltonian in phase tran-
original message in a proper way it is needed to originallysitions.
send more information using coding. The encoding is a map-
ping of the initial message of lengtN onto a sequence
which has the lengtlaN (a>1) How could statistical mechanics be applied for optimal

coding? To encode the original sequenge..., ey, ONe con-
(€1,....,&n) — (F1(€qy.nr ), r fanlEnsoneny). (1) structs a Hamiltoniard(s), a function of(sy,...,sy):

C. Statistical mechanics for coding

A noisy channel is represented as a mapping of the message ~ ~ H(S1,....5) = fa(sy, .50 fa(e, ) + -
by random Iettersh + faN(Slv (RN} !SN)faN(E]J Ty EN)
(frl€r, €)oo fun(er, ..., €0) = ho(Y1,---.Yan)
— (fi(eg, .o, en) 7, -on Tanler, - €0) 7an) (2) yj:fj(SL---15N)fj(511---16N)- (7)

where the noisyz;, 1<j<aN, are independent random Here the functions;, 1<j<aN, are the products of sone
numbers with probability distribution spins,fj:sjl, SHER andH has a minimal value & =n;. The
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influence of noise is very simple: every terfword) in Eq. Our purpose is to connect the complex adaptive phase
(7) is multiplied by a noise, and instead of the pure Hamil-with the neighborhood of the error threshal@). We will
tonianH(s) we have a noisy one, consider the border between the ferromagnetic and spin glass
, , phases in the random energy model, investigating its statis-
—H(s,7) =ho(ys, -, Yan), tical mechanics by Eq.(9). We will not consider the
informational-theoretical aspects of the problem any more—
yi =fi(sn, - s0fj (e ..., e0) 75 (8)  the subject is well discussed|[ia5]. In Sec. Il we will derive

To find the minimum of the Hamiltonian, one could considertne (fjmlte sd|ze corrfef[:rt:on to thei_ frg{e energt;%/ agdlklnfvesngate_

the statistical mechanics of the spin system with the Hamil- € dependence of the magnetization on € bu'k ferromag
tonianH at very low temperatures, netic couplmg._ In Sec. Il we will give a deflnltlo_n of a

complex adaptive property and define different universality

zZ=> ek, (9) classes. In Sec. IV we will suggest another concept of com-

§=+1 plex adaptive systems, i.e., the possibility of antiresonance.

In conclusion, we will briefly discuss our results and general

where H(s, 7)=H(s,,....Sy, 71,.... ), B—. Without  aqpects of complex adaptive systems.

noise(n;=1) one can calculate the configuratits, ...,sy)
giving the main contribution t&Z at B—«. We have the II. RANDOM ENERGY MODEL
following expression for the mean magnetization:

(s)=¢. (10) . . .
To investigate the complex phenomena we consider an
It has been proved ifl9] that Eq.(10) is correct also for  equilibrium statistical physics situation similar to the edge of
nonzero noise below the Shannon error threshold. chaos point, i.e., the border between the ferromagnetic and
In Shannon information theory one considers transmissioRpin glass(SG) phases in the random energy model. The
of a message to a receiver. The influence of the noise corrémnite size corrections of free energy will be calculated later
sponds to a simple product of coding worfige;,....ex)  on. In the REM N spins s=+1 interact through(?)

A. Energy configuration formulation

with a noisy letter; (both are accepting the values)+1 =[N!/p!(N-p)!], p—=, couplings with the Hamiltonian
D. Other versions of error threshold in statistical 18,23
hani j '
mechanics H=- 2 [llol ..... ip+Jil ’’’’’ ip]Sl,...,Sp. (14)
What generalizations of the considered scheme are pos- 1=iglp=N

sible to accept? Instead of E(Q) one can consider a parti-
tion with the quantum noise

N 0 JoN
Z:Trexp[—,B(H(aZ,,..,gﬁlhlLLE0{)], (12) Jigooiy (,ﬂ) (15

=1

Herej{

and

N 1 ) p<—'2 @)
Z:Trexp<—,8 exp[y(l—zaix/N):|H(oﬁ...a§,) ) polliy.ip) = =\ T O i,y ) (19
j=1

We see that there are ferromagnetic and random couplings,

(12) andJ, defines the ferromagnetic degree.
whereH is a mean-field-like Hamiltonian like In our spin model there aréNXifferent energy configu-
rations. It has been found by Derrida that for large values of
H(o%,...,00) = Ho(E 0%) (13)  pthere is a factorization for the energy level distribution. For
i a# B[18]
having a minimum at the configuratigg=1, 1<i<N. Suc- p(EwEp) = p(EL)p(Ep). 17)

cessful information transmission is connected with the phase

where(g?)=m;>0 (there is a nonzero longitudinal magne- For the first configuration witls;=1 [21],

tization); in Eq. (11) the quantum noise is additive, in Eq. 1

(12) it is a multiplicative one. Equation€ll) and (12) are p1(Eq) = ——=exd - (E1 + JoN)?IN], (18)
connected to the evolution modg87-30, when genetical VaN

information is transmitted to future generations. It is interest- .
ing that Eigen derived the correct error threshold in thisand for the other 3-1 levels[18],

model [27] just from informational theoretical arguments 1 5

long before the Sourlas work about the connection of statis- p(E) = T—Nexd‘ EIN). (19)
tical mechanics with information theory. The Eigen model v

has been exactly solved only recenitB9]; Eigen’s formula The REM has two equivalent definitions: via the energy con-
for the error threshold was confirmed. figuration Egs.(18) and (19) and via the spin Hamiltonian
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version Eq.(14). It is possible to solve the REM through the is further left than ~NAIn2 [the center off(u)M]. The
ordinary spin glass approach, as well as by using the factoi-M-SG border corresponds to
ization property Eq(17). According to the energy configu-

ration approach, we perform averaging via the energy level Jo= In2, «> B> JIn2. (27)
distribution(instead of random couplings in the usual case of ) . ] o
disordered systems When there is only the first level with distributiofi8),
(InZ)=-BE)=u;=JyNB. For that case W=f(u+u;).
(nz)= <In2 exp(- ,BE,J)> . (20 Therefore Eq(25) gives
a E
Here B is the invers_e temperature. It is possjbﬁto derive the I'(1)+ J ud f(u+ug)] = uy. (28)
result[21] that at high enough values d§> \In 2 [see Eq. —
(27)] at low temperatures the system is in the ferromagnetic ] . ]
phase with magnetization Using the last identity, we transform E®5) into
m=1. 21 -
! 1) (In Z>:1“’(1)+J ud¥ (u)
Using the trick[18] 0
* d(exp(-tz N
(In z>:r'(1)+f |nt%dt, (22) :Uf_f udw4(u)
one can factorize the integration via different energy levels - Jw
E,. The average is over energy distributions E4$) and Ur . Va(u)du, (29)
(19). It is enough only to calculate fdlexp(-tef5)) for the
single level. We consider where W, (u) =f(u+up)[1-f(uM]du.
f(u) = i_f exd-y*-e'exp-Ay)ldy, (23 B. Exact border of ferromagnetic and spin glass phases
V7T —00

_ Let us first consider the exact border of two phadgs
wherex =8N and(exp(—-te’5))=f(In t). We can further de- =yIn 2. ¥,(u) is a product of two monotonic functions, de-

rive for (&%) =(exf -t exp(=M,E)]) creasingone to the left, the other to the rightom the point
" u=-u;. We define an auxiliary functioR(u) by the differen-
W(u) =[f(u+upf(w™], (24 tial equation
whereu=Int, us=J,NB, M=2N-1. Now Eq.(22) gives F/ () = f(u+uy). (30)
, © o d¥(u) . . .
(INZ)=T"(1) + quu. (250  Using the second equation {86), we derive for|u| <\?
u/\ el
f(u) is a monotonic function. With exponential accuracy it F(u_uf):f dX,L— e—yzdy_ (32)
equals 1 below 0; then becomes 0 above it. We need four 0 Vardx

asymptotic regimef18,21]:

( Let us denoteV,(u)=[1-f(u)M] and perform integration by
%F( Z_l;>e—u2/)\2, N <u, parts in Eq.(29):
\y’ﬂ')\ )\ o]
1 (" InZ)=u;+ F’(u)W,(u)du
N (In2Z) =y L} (U)W(u)
~ < N J un
fu)~ 2 = Uy + F(22) W) = F (= 22) W(— )
1 22U\ 252 A
1_ !’_F__Z eu y _E<U<_xa *
KN A ; - f F(u)W5(u)du
1 - g\ —)\2<u<—)\—. -
\ 2 =us+[F() = F(=up] - F' (- up)
(26) >
. . . . Xf (u+u) P (uydu. (32
We are interested in those regimes asymptoticuferN or e

u~ N and\>1.As f(u+up)f(uM is like a step function, its

derivative is like aé function with the center at someu; ~ We have truncated the expansion in degreesusti; as
The vicinity of —u, contributes mainly to the integral in Eq. W(u) is similar to aé function near t;. We used¥,(«)
(25) (the bulk value is equal toip). A ferromagnetic(FM) =1, Wy(-»)=0, andF(-us) [Z, ¥, (u)du=F(-u). Then Eq.
phase appears whemn{the center of the functioh(u+u;)]  (32) gives
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B\y"ﬁ o * 5 i characteristic property of every complex adaptive system.
(INZ) —u; = —~f dxf exp(-y?)dy~ N2 (33)  One has an ordered external parameter to manage the system

N0 x as well as random parametedithe choice of “ordered” and
Equation(33) is one of the main results of our investigation. ‘random” could be subjectiye There is an emergefgssen-
It is obvious that in addition to the bulk term asymptotic in tially collective) property. If the interaction with the environ-
free energy there is a subdominant term proportional to th&ent is defined via the emergent property, then the CAS
square root of the number of degrees. The importance of th@fifts to the maximal instability point with maximal depen-
subdominant term in the entropy has been underlinddjin ~ dence of this emergent property on the ordered parameter.
and has been well analyzed [i]. These authors suggested =~ One can considedm/dj, as some degree of complexity.
identifying different universality classes of complex phe-A close characteristic is the second derivative of the free
nomena by the subdominant terms of entropy. In the 1D spi§nergy via ordered coupling, E¢10). In our case, they co-
glass model with long-range interactiomﬁ>~1/(i -j)?,  incide. However, there are possibly more complicated situa-
they derived Eq(33) for the entropy. I5] another object tions when they are different and both should be used.

with a similar subdominant entropy has been mentioned, i.e., -8t Us  calculate  the moments  of P,
=exp(—BE,) /= sexp(—BEy). Using the identity

languagg 31].
1 (” d"fo(t
L[ exp-yz-my - emay= 10
C. Small deviation from the border of two phases VT J 0 dt
Consider a small deviation from E¢R6) [scaling is rea-
sonable, as we see in EQ5)]: fot) =f(Int). (42)

— o We have
JO:\,'|n2+,—N. (34) re g 2
V * d?f(te’o * e
<P§>:f tdt fo(t)M‘lyzf —=dx,
0

Now the finite size correction is less than in E§3) and dt? Sjo N

decreases exponentially at large valueggyof

io

: * d?fy(t)
JE— — 2\ _ mM-22 0 N
(In2)- (\’In 2+ J—ON)N ~B\Nexp-j3). (39 (P = fo tdt fo(&)"*— 2 folte™™),
Now calculate the magnetization. We define % dfy(t) )2
(P,P,)= f t dt fo(te’oNA)f (t)M‘3(—) ,
exp(- BEy) 30 4 o 0 dt
> exp(- BE,)
(23 1 [e’s}
> (PPy=1-—| exp-x}dx. (42
Using the identity 1Z=[3dt % we derive form ay>1 7 N d -, 2
©.d * d For T<T,=2\In2:
m:—J dtaf(u+uf)f(u)'\": 1—J du f(u+uf)ajf“"(u), cm
0 - 1 (" T
> (PAy= (l —?f exp(— xz)dx><1 ——),
(37) a>1 N -lo TC
whereu=Int. Using the second equation in E@6) we de-
. L .
rive > (PP, = (1 - —_f exp(— xz)dx>?. (43
dlInZ 1 * a,y>1la#ty NI —j c
m= <,~ Lo L[ exp-yay, (38) , i
BINdjy, V), Define
and for its differential we have C= <p’i‘>2 <pi>_ (44)
dm 1 , a>1
d_jo = \T;exP(_ jo)- (390 C takes the maximal value at the critical pojgt0
The last expression could be represented also as C= % (45)
1 ?Xnzy 1 , _ ) _
ﬁ & = —=exp(—jo). (40)  For largej, we have thaC decreases exponentially:
v 0 v
~ _i2
Thus, at the exact border SG-F{yy=0) the dependence of C~exp=jo- (46)
the magnetization on the externédrdered parameter is The more detailed investigation of thg=0 case states

maximal (maximum instability principlg This is likely a  that
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o 1 in our case. Therefore the situation is coherent with the cri-
(Py=3, (Pp=7. (47)  terion(a). The complexity in our definition is the free energy
on a higher hierarchy levdkonnected with the structunes
We see thaP;=0, 1 with probabilities 1/2. One should remember that the free energy itself is on the

We can defineC as the edge of chaos parameter. At thesecond level of the hierarchy. The energy is on the ground
exact error threshold border it has a maximal value, equal tievel. Due to thermodynamic motion, only its smaller part is
1/2 at zero temperature, i.e., the probabilities of ordered anthanageable on the macroscopic let@ily the free energy
random motions are equdl.decreases exponentially outside could be extracted as mechanical work while changing the
the region. What is the advantage of our choice #d) over  global parametejs Therefore, complexity is a level on a
another onefp=,-1(P,? Equation(44) distinguishesp hierarchy of the following modalities: energy, free energy,

—oo as the optimal situation, and the last choice falils. and subdominant free energy. Each higher level is more uni-
To defineC, we have actually used the Tsallis entropy atversal. It is explicit in the quantum field theory approach to
g=2[32] critical phenomen416]. Different renormalization schemes
can give different bulk free energies, but the same logarith-
(E pr- 1) mic subdominant one. Thus we observe a hierarchy of mo-
| = 7 (48) dalities (a noncategorical statement about reality, 24).
d g-1 In principle, the hierarchy could be continued, and at some

level life could appear. Our vievrather statistical mechani-

cal than mathematichlis close to the one of Gell-Mann and
Lloyd in [3], defining the system complexity as the “length
of highly compressed description of its regularities.”

In [3] Gell-Mann and Lloyd assumed the connectionl of
with systems at the edge of chaos.

IIl. DEFINITION OF COMPLEX ADAPTIVE PROPERTY Due to the above mentioned hierarChy, the identification
AND UNIVERSALITY CLASSES of complexity with a subdominant free energy is more uni-

versal than the entropy approach [@f,5]. Sometimes the
A. Definition of complexity existence of structure could be identified in entropy or Kol-

Free energy is the fundamental object in statistical meMogorov complexity subdominant terms as well. In our case
chanics. The bulk free energy is proportional to the numbethe free energy reveals a huge subdominant term, but not the
of particles(sping. It is well known that in the case of some €ntropy.
defects on geometrical manifoldénes, surfaces in addi- We assume that other features of our toy model are char-
tion to the bulk term in the asymptote expression of freeacteristic for c;omplex adaptive systems. _
energy, there are subdominant terms proportional to some (0) There is an emergent property, maximally unstable
roots of N. Thus, the subdominant term in the free energyunder the change of ordered external parameters (3.
could be identified with the existence of some structuresSometimes it can be characterized as a second derivative of
(much more involved than simple geometrical defeirighe ~ free energy via an ordered parameter. _
system. In our case of the REM, the formulation of the (¢) The probability of ordered and disordered motions
model was homogeneous in space, but we got a square rogould be at the same levidke Eqs.(45) and(47)].
subdominant term. In a complex system we assume the fol- (d) The complex adaptive properties could be exponen-
lowing hierarchy: bulk motion and some structures above ittially damped in the case of even a small deviation of the
The subdominant free energy is related to the structures. grdered parameter. - .
we are interested just in structure, we can ignore the bulk Letus discuss different complex systems, defining univer-
free energy(an analogy in the physics of surfaces: to inves-Sality classes.
tigate the surface free energy we certainly miss the bulk en-
ergy). Therefore we have the following scheme.

(a) We define the complexity as the subdominant free en-
ergy. We have seen that in the case of the error threshold via We assume that the subdominant term of free energy de-
the REM it scales as the square root of the number of spinscribes the number of real parameters of the systert]la
We assume that it is the most important class of complexearning process for a model with finit€ parameters was
phenomena, connected with living systems. In the complexeonsidered and a logarithmic subdominant term, proportional
ity phase the intermediate scale free enefgyentropy, or to K, was found. For 2D critical theories we can take either
Kolmogorov complexity becomes strong, and the subdomi- the total effective number of bosonic degre@snformal
nant term scales as the square root of the number of degreehargec), or the number of primary fields as the number of
Egs.(33) and(35). parameters. According tfl6], nature has chosen the first

What do we mean by the intermediate scale? There is ane, and the subdominant term of the free energy is propor-
minimal scale(ultraviolet cutoff and maximal scaléinfra-  tional to the conformal charge and to the logarithm of the
red ong. The intermediate scale is just their geometric averdegrees of freedom.
age. In[33] the statistics of heartbeats were investigated. We see that the complex phenomena analyzed in previous
They found that healthy people can be differentiated by thesections correspond to another class of universality than the
coarse-grained entropy at the intermediate scale, which isodels in[16]. In critical theoried 16] magnetization disap-
coherent with the appearance of the middle scale free energyears at the transition poiftontrary to error threshold case

B. Critical theories
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Therefore, we admit that complex adaptive systems, whilegainst fire propagation for the given spark probability, using
having some scalingfat tails in markets could not be de- a minimal area of firebreaks. Scaling laws for the distribution
scribed by critical theories. of fire events have been found. The situation highly re-
In 2D percolation indices could be described by confor-sembles the error threshold case. Actually[38] the con-
mal field theory. Therefore, the percolation belongs to thenection of highly optimized tolerancéHOT) design with
class of critical theories. In our classification this situation issource coding has been directly stated. In the error threshold
as complex as the cla§$6]. there is also scaling for the mean magnetizatior1/2
In the spin glass model of the REM Derrida foundaloga—+c/\s“N [22]. It has been assumed i[88,39 that self-
rithmic subdominant free energy. Therefore, the model beerganized criticality SOC and HOT design are different
longs to the class df16]. classes of universality. We can adduce another argument. In a
sandpile there is the analog of free energy, the number of
recurrent states of the sandpile process. It is the number of
spanning trees of the free-fermion model. Therefore the
One can apply our criteria to financial mark¢®5]. To  sandpile belongs to the class of universd]itg] with central
analyze the financial time seriggt) (U.S. dollar—German chargec=-2[10]. We have used an important principle: the
mark exchange ratethe statistics of the price increment class of universality of the complex system should be the
y(t+ 1) —y(t) has been considered and the probability densitysame in all of its representations. A very interesting feature
function p(x,7) has been constructed from the empirical of HOT design is that it gives a robustness against the origi-
data. A Fokker-Planck equation, where the role of time isnally given distribution of the noise. The robustness is very
played by In7, has been derived for the last distribution. We fragile: there is a large probability for the total crugreat
see a diffusion in the scale lnas well as a drift. If36] the  fire) in the case of a change of the original conditions. This
ratio R of the ordered motion of and the diffusion has been resembles propertfd) in the definition of complex adaptive
calculated. It is the tail exponent pf P(y) ~ dy"**# [36]. In  phenomenon. 1h40] a constraint optimization with limited
practice,R=u~ 3-5. In thesituation, when the approach of deviation (COLD) has been suggested design to avoid the
[35,36 is correct, the more complex situation corresponds tdarge probability of total crush. They also mentioned the first
the smaller values of.. In the case of the error threshold known example of a HOT-design-like situation. It is the clas-
model, considered in this paper, the subdominant term i§ic problem of gambler’s ruin: optimizing the total return
larger in the regioflR~ 1. Outside, it decreases exponentially leads to ruin with probability 141]. For a very complicated
like the one in Eq(46). complex system with many hierarchies, the full optimization
For the markets something like this property can also bé&tates a single simple principle for management of the sys-
observed. There are fundamentalist traders who act in a dé&m, as in this case the essence of different hierarchies
terministic way and the noisy on¢87]. In our model, they should be the same. Only absolute optimization allows a full
are similar to ordered and random couplings. In the case dfansformation of the content from one hierarchy level to
(b) the fundamentalists’ number is chosen to have a maxim@nothel’. This crucial feature has been lost in the COLD case.
influence on the market global characteristics. In the usudl think that the choice of COLD can be successful only for
thermodynamics we have a fundamental notion of temperaot too complicated systems. In the next section we will
ture, and the equilibrium is possible only when the temperadiscuss the related concept of antiresonance for complex
ture of different subsystems is the same. Now an edge cidaptive systems, exploring the propeidyin our approach.
chaos parameter for complex adaptive systems is introduced.
It is reasonable to assume that in the stable state it should be
the same for different parts of the marké&r example, for
the traders and stocksin this way it could be possible to There are a lot of applications of Markov models in com-
predict future catastrophes. One can identify the edge oplex systems. Especially important are applications in bioin-
chaos parameters also by considering a correlation matrix dbrmatics[42]. There is some biological language in DNA
different stocks. According to the above mentioned datagnd proteins, and hidden Markov modéilse transition be-
there are both deterministic and stochastic parts. It is verjween states of the system is observed in a probabilistio way
important to identify the subdominant term in entropy by have been applied to model this language. One can investi-
considering block entropies of financial data. gate the block entropie(N) for words withN letters in the
stream of data and define the subdominant term. Such inves-
tigation has been thoroughly done[i@]. At large N, in the
case of classic ordeR, the Markov procesS(N) gets an
This is the last crucial achievement of complex systemexact linear asymptote &> R. For the case of a hidden
theory, related to the robustness of engineering desigMarkov model a subdominant entropy, decreasing exponen-
[38,39. In the simplest case one considers a forest fire moddially with N, has been found. This is very important. Those
on a 2D lattice. There are trees at any site of the lattice, anthodels, being very useful, do not share the class of univer-
there is a known probability of sparks. As a tree is fired, itssality of living systems, which we assume as corresponding
nearest neighbors are also fired. One constructs firebreaks the subdominant termvN.
(sites without treesto limit the size of the eventotal num- Networks are very popular in complex system research
ber of fired trees The goal is to construct a robust scheme[43,44]. How can these geometrical objects be classified into

C. Financial markets

E. Markov models and random networks

D. Highly optimized tolerance design
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universality classes? I[#5] has been introduced a statistical tions) as a complexity. It is a reasonable characteristic to be
mechanics approach to describe the properties of a graghvestigated(although a very complicated ond think that
ensemble. The mean characteristics of the graph have beé&midentify the universality class of the model it is enough to
fixed, while maximizing the entropy of the ensemble. Now calculate finite size corrections of the free energy or energy.
the number of pairs of vertices plays the role of the numbeSuch calculations have been done for a Sherrington-
of degrees of freedom. The free energy can be defined. Fdtirkpatrick model[50]. The subdominant energy scales as
the case of a random graph there is no finite size correctioN'3. Therefore, it is an additional class of complexity. For
in free energy expression. Therefore, the random graph codifferent spin glasses other subdominant term scalings are
responds to the Markov model class of complexity. Unfortu-possible as well, and finite dimensional spin glasses are
nately | do not see a way to enlarge the method4d&] to  likely to have another universality class. We have mentioned
scale-free networks. the Sherrington-Kirkpatrick moddK8], because it is con-

) _ nected with neuron networks.
F. Virus evolution near the error threshold

The evolution of the majority of viruseRNA genome IV. ANTIRESONANCE IN COMPLEX SYSTEMS
viruseg is described well by the Eigen modg27]. This
brilliant model gives a simple and complete version of Dar- A. Complex resonance

win evolution theory. Information is represented here as a The concept of resonance is probably the most noticeable
chain of spins taking.=2 or \=4 values. There arg" dif-  phenomenon in nature, culture, and science. The close notion
ferent configurations with corresponding probabilitigs 1 of synchronization in complex systems is becoming more
<i=\M. At any moment, the virus is giving offsprings with and more populaf51]. We are going to analyze the idea of
some rate specific for his genonfiigness. Offsprings ran-  resonance in complex systems, to look for the possibility of,
domly change their mother genome to other of@sita- in some sense, the inverse situation with an exponential
tions). When the majority of individuals has a genome neardamping of motior(antiresonande We suppose that this no-
one configuration*wild” one), then genetic information is tion will complement our view of complex systems in the
successfully transferred to future generations. Otherwiseprevious section.
there is a flat distribution of individuals in the genome space. Originally, the simplest resonance situation has been in-
It is interesting that the virus evolution is near the erroryestigated in the mechanics of a classical deterministic sys-
threshold. In “quasispecies theorj46] (a virus population tem with some resonance frequency, driven by an external
with a distribution like a cloud around some “wild” genome harmonic force. When two frequencies coincide, the reaction
configuration there are equivalents of energy, i.e., fithess,of the system to an external force increases drastically. Even
and free energy, i.e., mean fitness, for the whole sysfem in this simple case we can observe two features of the phe-
one configuration a product of fitness and errorless copyingomenon. Frequency is an essence of motion, and there is a
probability). All of these (selective abilities can be derived sharp peak in the ratio of output to force.
in this model just as a consequence of the Eigen equations. The next step was parametric resonance in classical me-
During evolution, the population is located mainly in a ge-chanics. There is a hierarchy here. We observe a motion at
nome with high selection ability. Considering the evolution given values of parameters, and the resonance frequency de-
in dynamic environments, it is possible to define a differentpends on the values of external parameters. If one changes
kind of selective ability, like a higher form of free energy the external parameter with the same frequency as the fre-
(complexity?. This approach to defining complexity is a quency of the pendulum, there appears the famous paramet-
quite objective one. We assume that it is possible to calculatgic resonance—the flow of energy from a higher level of the
analytically also the ground state entrofaycluding the sub-  hierarchy to a lower level. Let us generalize this situation to
dominant ongand define the complexity biy,5]. other complex systems to define complex resonance.

It could be possible to investigate some aspects of optimal |f there is a hierarchy in the system, and states at different
coding, impossible to do in an alternative way. Choosing asierarchic levels have some esserfcemparable logically
the REM’s Hamiltonian a fitnesslike function, we can getwith each other, generalized resonance happens when these
analytical dynamics for optimal codingthe work is in  essences coincide. What about the essence of the state? In
progresg Thus, rigorous investigation of informational the- classical mechanics, there is only one real number character-
oretical (complexity aspects of evolution models could be izing the total state, i.e., frequency. In general one should
very fruitful for both disciplines. look for other total parameters of the system. In modern

Virus evolution is often referred to as a typical example ofphysics these are the following: temperature in statistical me-
a complex adaptive system. Another famous example is thehanics, the replica system breaking scheme in spin glasses
immune system. Statistical mechanics has been successfullgdge of chaos parameteand the wave function phase in
applied to this casp47]. | do not see a direct analogy with quantum mechanics.
the error threshold phenomena here. But one should defi- The next famous example of sucligeneralized paramet-
nitely choose a model from a high complexity class. ric resonance situation is related to the Nishimori line in
disordered systen{$2,53. A hierarchy(quenched disordgr
is present here. Sometimes it is possible to introduce some

Usually one defines the logarithm of different ground formal temperature to describe this disorder. If two tempera-
states[49] (solutions of Thouless-Anderson-Palmer equa-tures(the real one for the spins and the formal one for the

G. Sherrington-Kirkpatrick model
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guenched disordgrcoincide, the system reveals some inter-with only resonant dampingike the domino effegt
esting properties, becoming maximally analytic in some
sense.

So we can define a hierarchy for the resonance. In the
trivial case, the system is not hierarchic, it is logically homo- ~ One consider$52,53 N spinss; with interaction Hamil-
geneous. The more involved case corresponds to the situénian
tion with very different kinds of motions ofand hierarchy. )

It is reasonable to define the second case as a complex reso- H= o E JigoooigSigSigr oSty (53
nance. In several situatioffise., stochastic resonan¢evhen 2eelp

it is impossible to define and compare clearly the essence dfhere is ap-spin interaction here; the coupling?s1 ,,,,, | are
a state, one considers a situation when there is a sharp pegihdom quenched variables +1 with probabil(w+n§)0)/2
in the ratio output-input at an optimal value of the externalfor the values 1 and1-my)/2 for the values —1. It is pos-

C. Nishimori line

parameter. . . sible to write the following probability distribution:
An important moment should be mentioned regarding our
concept. If we consider some functional having different pa- , B exp(,BoJi1 ..... i;)
rameters, functions, and logical structures, and we optimize P(Jil ..... iy~ 2 coshiBy) (54)

it over the entire variableén addition to some fixed group _ _
of parameters or functiohsit could be stated that the es- The parametej3, resembles an inverse temperature. Using
sence of the whole system is the same as that of a fixethe invariance of the Hamiltonian under the transformation

group. . . (55)

S SV Jigiy 7 i i Uiglig e Ui

B. Antiresonance in [562,53 the exact energy of the model = has been

Let me now analyze the resonance situation with the opealculated. At3=g, our system has the best ferromagnetic
posite goal: to use the high levels of hierarchy to achieve @roperties in the sense that the number of up spins
maximal negative effect. This is a situation not too rare inX(s)/|(s)| is maximal at the Nishimori temperatuig3]. In
living systems. the opposite phase, we can tajge—/3,. While the order

We define antiresonance as a situation, wtiBna reso-  parameters are different in the ferromagnetic and antiferro-
nance is possible for some value of the external parametefagnetic phases, the free energy is the same in both models,
(2) it is possible to define the opposite phase transformations 7(j, 8)=Z(j,-B) for the Hamiltonian(53). For the odd
of the parameter; an(8) at the opposite phase values of the yajues ofp one has optimal properties for the configuration
parameter there is eithés) an exponential damping of a s=-1. Thus, there is a trivial antiresonance according to our
motion or(b) a new featuréopposite in some sense to those definition. For the even values pf(i.e., p=2) and bonds on
at the resonant parameter caa€ising in a resonant way.  the links of hypercubic lattices id-dimensional space, there

The phenomenon is very complex. Thus, we are investijs an antiferromagnetic orderirign antiresonance situatipn
gating the simplest models, trying to reveal those situations

in complex systems, when such a phenomenon is possible.

Let us consider the pendulum wik0)=x, ,x'(0)=0, when D. Antiresonance in complex systems

the frequency varies with some small amplitutgs4]: A search for antiresonance in stochastic reson@b6kis
5 a very interesting issue. The resonance is certainly a complex
d_x = —w1 +h cog2wt + ¢)]x. (49) one, when the deterministic harmonic motion has the same
dt? period as the transition because of noise. To construct the

antiresonance is problematic, as stochastic resonance has no
phase to reverse the resonance situatiofi5@} a stochastic
resonance explanation for the crashes and bubbles in finan-
hw cial markets(using the Ising spin modelwas considered.
x(t) = exp(Tt)[cos(wt)]. (50)  There is no phase for the noise to be reversed in stochastic
resonance, but the information for the agents can certainly be
Choosing co@wt+ ¢)=-sin(2wt), we have an exponential positive or negative, thus moving the market from the border
damping of two phases to one side.
During the last decade, the idea of evolution or develop-
X(t) = ex;{— h—Wt>[cos(wt)]. (51) ment at the edge of cha¢g,8], related to complex adaptive
systems, was very popular. What about the antiresonance as-
pect of the origin of life? It is the case, at least, for the
hypercycle model by Eigen and Schustb?]. One tries to
4InA construct a self-replicating system that bypasses simple prob-
~ (52 lems, i.e., mutations, but, unavoidably, parasite creatures ap-
pear. As a result, there is a chance to consume all the infor-
In this situation the picture is symmetriboth amplification mation via those parasite creatures. We see, in some sense, a
and damping are possibleThe other situation is possible resonance picture with a chance for antiresonance. Virus

Here h<1, and w is a frequency. Taking c@@wt+ ¢)
=sin(2wt), we get an exponentially amplified solution:

For the original amplitudé\ the damping period is

T

hw *
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evolution is also often near the error thresheidutation  check the universality class of codes with finite block length
catastrophg[58]. At the top level of life there is the phenom- [60], optimal codes with a finite number spin interaction.
enon of apostasis, when the cell can be killed by a simpléJnfortunately, the alternative method|[&2,63 could not be
command. applied here directly.

Our point of view is the following: even if complex sys- Carefully investigating error threshold phenomena in the
tems are walking at the edge of chaos and climbing théXEM, we have found several criteria of complexity: Egs.
mountains of fitness landscapés case of biological evolu- (33, (35), (39), (44), and (46), which could be applied for

tion), it is often a walk near the precipice. For evolution it is COMPplex adaptive systems. I4,5] it was already suggested
not so dangerous, as only the survival of the species is crd® consider the subdominant part of the entropy as a measure
cial. One should be much more careful with a rare or single’f complexity. We have enlarged that idea, suggesting the
system, like humanity. use of a subdominant part of the free energy as a measure of

We observe the antiresonance phenomenon in history. It orélplex:'([jy.blt IS mo_ae ur:jwersar: than the bul_k frhee r(]e_nergyr,]

. . ; . and could be considered as the next step in the hierarchy

known f_rom.the experience of the history of ma.nklnd that 'nenergy—free energy—subdominant term in free energy. This
tense situations when a category connected with some sy

. rﬂ'lerarchy could be continued. Complexity appears on the
bol becomes urger(paramountthe defying of that symbol  yhirq jevel; at some higher levels life could appear. We admit

unavoidably leads to the reverse reactioften during the  tha our approach includes a qualitative idea about the edge
three yearg Very dangerous is a situation when such phe-gf chaos: in the complex phase, the probabilities of ordered
nomenon prqceeds W|deI_y over the world simultaneously imand disordered motions are eq{ih. (44)], and complexity
many countriegglobal antiresonange properties damp exponentially outside the error threshold
point[Egs.(35), (39), and(46)]. We adduced arguments that,
E. Complexity parameters and stability of complex systems unlike SOC or ordinary critical theories, HOT design be-
longs to the error threshold universality class of complexity.

¢ 5 In addition to the ed ¢ ch There are a few classes of subdominant term behavior: zero
systems? In addition to the edge of chaos parameter, reasogy; exponentially decreasing subdominant terms for Markov
able for error-threshold-like systems, we can use the Nishi

i o e ""and hidden Markov modelk6]; logarithmic corrections for
mori temperature as a parameter. In principle, Parisi's rep"c_%ritical theories [16]. cubic root corrections for the

symmetry scheme also .C.OUId be considered as a Cc.’mpl.ex'@herrington-Kirkpatrick model; square root corrections for
parameter. For the stability of the c_om_plex_ system it is im-p o ooy threshold, long-range SG mod§] and, maybe,
portant that .those 'parameters coincide in different SUb[anguage. First, a complexity class should be identified from
SVSte”_‘S or hl_erarchlal levels. . . the empirical data, to model a complex phenomenon. As per-
_An interesting example of a complexity parameter in pro-¢, ation or SOC models belong to the same universality class
tein physics is the protein design temperafisee the review ¢ it i improbable that they can describe financial mar-

[59])' Here Fhe Hamiltoniai(j,s) is a functl_on ofj; (amino kets. Originally, only SOC criticality was identified with the
acid types in a sequencands (conformations The cou-  quajitative idea of “edge of chaos.” But we see that the error
plings j have a distribution like the one in E(b4): threshold class is higher than SOC, and this complexity class
P(j) ~ exfd- H(j,9) B4, (56) is likely connected with Iifelikg systems]. We have intro-
duced also the concept of antiresonance, a phenomenon, per-
where s is some ferromagneticlike “native” configuration. haps, typical for the creatiofand existenceof life and for
Perhaps the methodology of the Nishimori line could be apadvanced complex adaptive systems.
plied to the protein case. We have suggested investigating, first, the main features
of complexity to identify the large universality classes. What
other characteristics could be used for the further character-
ization of complex phenomena? Perhaps the language of the
We have rigorously solved the error threshold for optimalsystem with its grammar, or, in physical systems, the exis-
codes using the random energy model, calculating the madence of local gauge invariance. In the case of the REM,
netization and finite size corrections to the free energy. Thigormulated as a spin model, there is a local gauge invariance
approach was applied in our previous work where many refsee Eq(55)]. There is local scale invariance for the models
sults of Shannon information theory about optimal codingof [16]. Therefore the two theories could be connected, ac-
were derived. There is an alternative metheplica ap- cording to our complexity analysis. This is really the case, as
proach with Nishimiori ling, working well also in the case has been proved if64]. We hope that other applications of
of realistic low-density parity check cod¢80] (see the re- this analysis are possible. The spin glass phase and error
view [26]). The REM approach could not be applied directly threshold border in the REM reveal the advantage of the
in the case of finite block coding, but it is much simpler. Thesubdominant free energy approach to complexity compared
main results of information theory were derived in the REMwith the subdominant entropy one. The latter, if used as a
approach about 6-9 years before those found through altecomplexity measure, produces lower clagse®(1) instead
native methods: error threshold for finite rate of informationof In N or YN]. We have used the free energy to define the
transmissior{ 19] versus[61], reliability exponen{25] ver-  complexity. In general, when a direct statistical mechanics
sus[62], data compressiofi23] versus[63]. Multichannel  formulation of the problem is impossible, one can use a vari-
coding was analyzed first if24]. It is very interesting to able describing a manageable amount of motion on the mac-

V. CONCLUSION
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roscopic level. The context of the problem can contributenately, early attempts to find it have not been succe$8fll
greatly to making a proper choice. For example, in the EigerAnother important problem is to identify the universality
model the equivalent of energy is fitngsgth a minus sign class of turbulence. An accurate numerical analysis to iden-
Free energy is automatically defined as a negative selectiviify the universality clas$67] is likely possible for the case
ability (mean fitnessof a group of configurations. of Burgers turbulence. According to the whole experience of
In Sec. IV the idea of the essence of a complex systencomplex systems and our “prereality” principle, to succeed
state was used several times. In the case of spin glasses, tifiea turbulence solution one should formulate the problem in
real state of the system is defined in the replica space witB wider abstract space, and then return back to the observ-
some probability followed by projection to zero replidgas ~ able. It is very important to investigate the language models
Parisi's theory. In the case of hidden Markov models the [65] and latent semantic analy$®8,69 in our approach. As
state is not directly observable again, as we get informatiove mentioned, the results ¢81] (by means of entropy
via probabilistic processes. In quantitative linguistics, an abanalysi already support the idea that language belongs to
stract linear space has been applied to catch the meaning ®te error threshold class. The investigation of the semantic
the words[65]. Perhaps the first example is quantum me-class is much deeper. The singular value decomposition in
chanics: there is a unitary evolution of the state in Hilbert[65,68,69 qualitatively resembles the fracturing of couplings
space, and during the measurement we have some probabio ferromagnetic and noisy ones.
listic results. In all those examples the state of the complex Note added in proofRecently, J. Crutchfield sent me
system is not formulated directly via observables, but insteagome of his article§70-72. In Ref.[70] the Renyi entropy
in some hidden abstract space, where the interpretation of tHeéas been applied to investigate the compleityich before
system(its motion is rather simplgthe formulation of spin ~ Ref. [3]). In Ref.[71] the edge of chaos phenomenon has
glass statistical physics in replica space is much easier thd¥een investigated rigorously in dynamic systems; later the
in the zero replica limit, and formulation of the Schrédingeredge of chaos situation has been clarified in cellular auto-
equation is easier than a quantum theory of measurémenmata[72]. This suggests that the names of J. P. Crutchfield
We assume that it is an important feature of complex sysand K. Young should be added to the list of the founders of
tems: the real state of the system is hidden in abstract spadée edge of chaos phenomenon.
and can be observed in reality only in a probabilistic way.
Therefore we suggest a “principle of expanded prereality:” to
solve a complex problem one should reformulate the prob- | am grateful to C. Biebricher, S. Chen, V. Priezjev,
lem in some internal, hidden, wider spatprereality”), and Y. Sinai, D. Saad, and H. Wio for discussion. | greatly appre-
then return back to the observable spdteality”) in a  ciate P. Bak’s earlier support of my idea to connect complex
probabilistic way. phenomena with the error threshold. This work was partially
In view of our results, it is very important to look for supported by the National Science Council of Taiwan under
antiresonance phenomena in stochastic resonance. UnfortGrant No. NSC 91-2112-M-001-056.
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