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The free energy of the random energy model at the transition point between the ferromagnetic and spin glass
phases is calculated. At this point, equivalent to the decoding error threshold in optimal codes, the free energy
has finite size corrections proportional to the square root of the number of degrees. The response of the
magnetization to an external ferromagnetic phase is maximal at values of magnetization equal to one-half. We
give several criteria of complexity and define different universality classes. According to our classification, at
the lowest class of complexity are random graphs, Markov models, and hidden Markov models. At the next
level is the Sherrington-Kirkpatrick spin glass, connected to neuron-network models. On a higher level are
critical theories, the spin glass phase of the random energy model, percolation, and self-organized criticality.
The top level class involves highly optimized tolerance design, error thresholds in optimal coding, language,
and, maybe, financial markets. Living systems are also related to the last class. The concept of antiresonance
is suggested for complex systems.
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I. INTRODUCTION

A. Complexity

The definition of statistical complexity is an entirely open
problem in statistical mechanicssseef1,2g for an introduc-
tion to the problem andf3g for a recent discussiond. There are
a lot of different definitions having sometimes a common
context. A certain success was the discovery of the idea of
the “schema,” highly compressed information, introduced by
Gell-Mann for complex adaptiveswe assume, for all com-
plexd systems. Some attempts, based mainly on entropy con-
cepts, have been undertaken to define the concept of com-
plexity. The approachf4–6g relevant for our investigation is
of special interest. A very interesting aspect of complex phe-
nomena is related to the edge of chaossthe border between
chaotic and deterministic motiond, the phase of complex
adaptive systemssCASsd f2,7g. The concept of the edge of
chaos, independently suggested by Baket al. f8g, Kauffman
f7g, and Langtonf9g, is not well defined quantitatively. How-
ever, it is widely accepted that this concept is connected with
the sandpilef10g. This concept is of special importance due
to its possible relation to the creation of life and evolution
f7g. This paper is devoted to relations between this phenom-
enon and some aspects of information theory and optimal
coding f11g. We assume that the definition of a singlesor
bestd complexity measure is a subjective one, even with the
reasonable constraint that complexity should vanish for to-
tally ordered or disordered motionssee the disputef12,13gd.
More strict is the definition of different universality classes
of complexity, which is presented in this paper. We suggest
several numerical criteria for complex adaptive properties. In
practice we suggest identifying the universality class of com-
plexity from the experimental data and choosing a model
from the same class to describe the phenomenon.

We assume the following picture of complex phenomena.
The following hierarchy is presented: instead of the micro-
scopic motion of molecules or spins we deal with the mac-
roscopic thermodynamic variables. In addition, some further
structures arose, sometimes proportional to the number of
fractional degrees of the particles. One can understand quali-
tatively the complexity as a measure of the additional struc-
tures. We are not going to scrutinize the concrete features of
those structures. We will just evaluate the total measure of
the structures on the basis of the free energy expression,
including finite size corrections. The suggested complexity
measures could be applied to pure systems, as well as to
those defined via the disorder ensemblesas in spin glassesd.
For interesting cases of complex adaptive systems, a hierar-
chy in the definition of the model, either a disorder ensemble
sas in spin glassesd or the scale of the systemsspatial or
temporald should be represented. The structures themselves
are derived from microscopic motions of spins via order pa-
rameters. When those order parameters fluctuate, they can be
handled like microscopic spins or molecules. Therefore, in
such cases, including the optimal coding of the article, we
can identify complex phenomena as a situation with chang-
ing reality or creation of new realitysthe thermodynamic
reality is a mapping of molecular motions into a few thermo-
dynamic variablesd. A good analogy is the weak interaction
in high energy physics on different scales. On the level of
low energies it can be described through a simple picture by
Fermi. However, on the level of 100 GeV, when broken sym-
metry is restored, there is an absolutely different reality.

Our approachsto investigate just the ensemble averaged
free energy instead of the logarithm of the number of differ-
ent ground states in spin glassesf49gd is coherent with the
idea of Jayenesf14g saying that there is a single probability
in physics, measurable during observations, and there is no
need to fracture it.

We assume that it is proper to define the criteria of com-
plexity via the free energy rather than via the entropyssee
the discussion in Sec. IIId. In f15g a criterion of complexity,*Electronic address: saakian@jerewan1.yerphi.am
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functioning from galaxies and stars to brains and society, has
been suggested: the rate of free energy density change. It is
an interesting approach, but we prefer to deal with dimen-
sionless criteria. The point that the subdominant free energy
describes the degree of system complexity has already been
recognized, at least, for two-dimensionals2Dd critical sys-
tems. According tof16g, the subdominant term is propor-
tional to the conformal chargeseffective number of bosonic
degrees of freedomd. We just suggest applying this criterion
for any system, as one of the complexity criteria. For the
situation when there is no explicit free energysoptimal cod-
ing, sandpiles, etc.d one should try to find some equivalent
statistical mechanical formulation of the theory and investi-
gate the free energy. In this work we give a derivation of the
subdominant free energy for a case related to optimal coding
and identify the universality class of the error threshold. We
provide other criteria of complexity and a list of universality
classes.

B. Optimal coding

Information processing should certainly be a property of
complex adaptive systems. What can be clarified by statisti-
cal physics? The connection of statistical physics to informa-
tion theory is known from the work of Jayenesf14g. In 1989
Sourlasf17g found a connection of the random energy model
sREMd of a spin glass by Derridaf18g with an important
branch of Shannon information theory, i.e., optimal coding
theory f11g. In f19g I proved Sourlas’s idea for the principal
case of finite velocity codes. An important result has been
derived by Rujanf20g regarding coding by statistical me-
chanics models at finite temperatures. In a series of work
f21–25g we derived the main results of Shannon information
theory using the REM. Those results were repeated by alter-
native methods laterssee the reviewf26gd. Because we are
going to consider models at the junction of statistical me-
chanics and optimal coding, some features of optimal coding
should be briefly mentionedf11g.

Let us consider the transition of information, a sequence
of ±1, through a noisy channel to a receiver. There exists
original information which is a sequence of +1 and
−1:e1,… ,eN. If we send some letters through the channel,
due to the noise, the letters change their correct values, and
information is partially lost. Therefore, to recover further the
original message in a proper way it is needed to originally
send more information using coding. The encoding is a map-
ping of the initial message of lengthN onto a sequence
which has the lengthaN sa.1d

se1,…,eNd → „f1se1,…,eNd,…, faNse1,…,eNd…. s1d

A noisy channel is represented as a mapping of the message
by random lettersh j:

„f1se1,…,eNd,…, faNse1,…,eNd…

→ „f1se1,…,eNdh1,…, faNse1,…,eNdhaN…, s2d

where the noisyh j , 1ø j øaN, are independent random
numbers with probability distribution

Psh jd =
1 + m0

2
dshi − 1d +

1 − m0

2
dshi + 1d. s3d

The transmitter introduces additional informationsa.1d,
and the receiver must extract useful information. These two
operations are called encoding and decoding. In general,
coding is a mapping of the initial message of lengthN onto a
sequence which has the lengthaN, a.1. Thus, encoding is
done withaN functionsf j = ±1. The valuea−1=R, the “rate”
of information transmission, characterizes the degree of re-
dundancy. Decoding in the general case is the procedure of
extracting the initial message out of the noisy sequence
sf1h1,… , faNhaNd.

When is errorless decoding possible? We have a
Boltzmann-Gibbs-Shannon measure of information for a dis-
crete distributionpi:

− o
i

pi ln pi . s4d

In the original message any letter ±1 carries information ln 2.
In case of noise by Eq.s3d any letter carries the information

ln 2 − h, s5d

h = − S1 + m0

2
ln

1 + m0

2
+

1 − m0

2
ln

1 − m0

2
D .

In the last expression we extracted from ln 2 the entropyh of
the distribution by Eq.s3d.

The encoding can work in different ways. To extract the
original message without error it is reasonable to put the
constraint

aNSln +
1 + m0

2
ln

1 + m0

2
+

1 − m0

2
ln

1 − m0

2
D ù N ln 2.

s6d

On the left, we have the information of the received message.
On the right, we have the information to be extracted. This is
the Shannon fundamental theorem for errorless decoding.
Only very special coding schemes correspond to the special
case, when the last expression transforms to an equality.
Such codes are optimal ones. They are universal mathemati-
cal constructions, like the critical Hamiltonian in phase tran-
sitions.

C. Statistical mechanics for coding

How could statistical mechanics be applied for optimal
coding? To encode the original sequencee1,… ,eN, one con-
structs a HamiltonianHssd, a function ofss1,… ,sNd:

− Hss1,…,sNd = f1ss1,…,sNdf1se1,…,eNd + ¯

+ faNss1,…,sNdfaNse1,…,eNd

; h0sy1,…,yaNd,

yj = f jss1,…,sNdf jse1,…,eNd. s7d

Here the functionsf j , 1ø j øaN, are the products of somep
spins,f j =sj1

,… ,sjp
, andH has a minimal value atsi =ni. The

DAVID B. SAAKIAN PHYSICAL REVIEW E 71, 016126s2005d

016126-2



influence of noise is very simple: every termswordd in Eq.
s7d is multiplied by a noise, and instead of the pure Hamil-
tonianHssd we have a noisy one,

− Hss,hd = h0sy18,…,yaN8 d,

yj8 = f jss1,…,sNdf jse1,…,eNdh j . s8d

To find the minimum of the Hamiltonian, one could consider
the statistical mechanics of the spin system with the Hamil-
tonianH at very low temperatures,

Z = o
si=±1

e−bHss,hd, s9d

where Hss,hd;Hss1,… ,sN, h1,… ,hNd , b→`. Without
noisesh j =1d one can calculate the configurationss1,… ,sNd
giving the main contribution toZ at b→`. We have the
following expression for the mean magnetization:

ksil = ei . s10d

It has been proved inf19g that Eq.s10d is correct also for
nonzero noise below the Shannon error threshold.

In Shannon information theory one considers transmission
of a message to a receiver. The influence of the noise corre-
sponds to a simple product of coding wordsf jse1,… ,eNd
with a noisy letterh j sboth are accepting the values ±1d.

D. Other versions of error threshold in statistical
mechanics

What generalizations of the considered scheme are pos-
sible to accept? Instead of Eq.s9d one can consider a parti-
tion with the quantum noise

Z = Tr expF− bSHss1
z,…,sN

z d + mo
j=1

N

si
xDG , s11d

and

Z = Tr expS− bHexpFgS1 − o
j=1

N

si
x/NDGHss1

z…sN
z dJD ,

s12d

whereH is a mean-field-like Hamiltonian like

Hss1
z,…,sN

z d ; H0So
i

si
zD , s13d

having a minimum at the configurationsi =1, 1ø i øN. Suc-
cessful information transmission is connected with the phase
whereksi

zl;mi .0 sthere is a nonzero longitudinal magne-
tizationd; in Eq. s11d the quantum noise is additive, in Eq.
s12d it is a multiplicative one. Equationss11d and s12d are
connected to the evolution modelsf27–30g, when genetical
information is transmitted to future generations. It is interest-
ing that Eigen derived the correct error threshold in this
model f27g just from informational theoretical arguments
long before the Sourlas work about the connection of statis-
tical mechanics with information theory. The Eigen model
has been exactly solved only recentlyf29g; Eigen’s formula
for the error threshold was confirmed.

Our purpose is to connect the complex adaptive phase
with the neighborhood of the error thresholds6d. We will
consider the border between the ferromagnetic and spin glass
phases in the random energy model, investigating its statis-
tical mechanics by Eq.s9d. We will not consider the
informational-theoretical aspects of the problem any more—
the subject is well discussed inf25g. In Sec. II we will derive
the finite size correction to the free energy and investigate
the dependence of the magnetization on the bulk ferromag-
netic coupling. In Sec. III we will give a definition of a
complex adaptive property and define different universality
classes. In Sec. IV we will suggest another concept of com-
plex adaptive systems, i.e., the possibility of antiresonance.
In conclusion, we will briefly discuss our results and general
aspects of complex adaptive systems.

II. RANDOM ENERGY MODEL

A. Energy configuration formulation

To investigate the complex phenomena we consider an
equilibrium statistical physics situation similar to the edge of
chaos point, i.e., the border between the ferromagnetic and
spin glasssSGd phases in the random energy model. The
finite size corrections of free energy will be calculated later
on. In the REM N spins si = ±1 interact through s p

N
d

;fN! / p! sN−pd ! g , p→`, couplings with the Hamiltonian
f18,21g

H = − o
1øi1,…,ipøN

f j i1,…,ip
0 + j i1,…,ip

gsi1
,…,sip

. s14d

Here j i1,…,ip
0 are ferromagnetic couplings

j i1,…,ip
0 =

J0N

s p
Nd , s15d

and for quenched disorderj i1,…,ip
we have a distribution

r0s j i1,…,ip
d =

1
Îp
Îs p

Nd
N

expS− j i1,…,ip
2 s p

Nd
N
D . s16d

We see that there are ferromagnetic and random couplings,
andJ0 defines the ferromagnetic degree.

In our spin model there are 2N different energy configu-
rations. It has been found by Derrida that for large values of
p there is a factorization for the energy level distribution. For
aÞb f18g

rsEa,Ebd = rsEadrsEbd. s17d

For the first configuration withsi =1 f21g,

r1sE1d =
1

ÎpN
expf− sE1 + J0Nd2/Ng, s18d

and for the other 2N−1 levelsf18g,

rsEd =
1

ÎpN
exps− E2/Nd. s19d

The REM has two equivalent definitions: via the energy con-
figuration Eqs.s18d and s19d and via the spin Hamiltonian
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version Eq.s14d. It is possible to solve the REM through the
ordinary spin glass approach, as well as by using the factor-
ization property Eq.s17d. According to the energy configu-
ration approach, we perform averaging via the energy level
distributionsinstead of random couplings in the usual case of
disordered systemsd

kln Zl ; Klno
a

exps− bEadL
E

. s20d

Hereb is the inverse temperature. It is possible to derive the
result f21g that at high enough values ofJ0.Îln 2 fsee Eq.
s27dg at low temperatures the system is in the ferromagnetic
phase with magnetization

mi = 1. s21d

Using the trickf18g

kln Zl = G8s1d +E
−`

`

ln t
dkexps− tZdl

dt
dt, s22d

one can factorize the integration via different energy levels
Ea. The average is over energy distributions Eqs.s18d and
s19d. It is enough only to calculate forkexps−tebEidl for the
single level. We consider

fsud ;
1

Îp
E

−`

`

expf− y2 − eu exps− lydgdy, s23d

wherel=bÎN andkexps−tebEidl= fsln td. We can further de-
rive for ke−tZl;kexpf−t expsoa=1

M Eadgl

Csud = ffsu + ufdfsudMg, s24d

whereu=ln t , uf =J0Nb , M =2N−1. Now Eq.s22d gives

kln Zl = G8s1d +E
−`

`

u
dCsud

du
du. s25d

fsud is a monotonic function. With exponential accuracy it
equals 1 below 0; then becomes 0 above it. We need four
asymptotic regimesf18,21g:

fsud < 5
1

Îpl
GS2u

l2De−u2/l2
, l ! u,

1
Îp
E

u/l

`

dxe−x2
, uuu ! l2,

1 −
1

Îpl
GS−

2u

l2Deu2/l2
, −

l2

2
, u ! − l,

1 − eu+l2/4, − l2 , u , −
l2

2
.

6
s26d

We are interested in those regimes asymptotic foru,N or
u,ÎN andl@1. As fsu+ufdfsudM is like a step function, its
derivative is like ad function with the center at some −u0.
The vicinity of −u0 contributes mainly to the integral in Eq.
s25d sthe bulk value is equal tou0d. A ferromagneticsFMd
phase appears when −uf fthe center of the functionfsu+ufdg

is further left than −ÎNl ln 2 fthe center of fsudMg. The
FM-SG border corresponds to

J0 = Îln 2, ` . b . Îln 2. s27d

When there is only the first level with distributions18d,
kln Zl;−bkE1l=uf ;J0Nb. For that case C= fsu+ufd.
Therefore Eq.s25d gives

G8s1d +E
−`

`

udffsu + ufdg = uf . s28d

Using the last identity, we transform Eq.s25d into

kln Zl = G8s1d +E
−`

`

udCsud

= uf −E
−`

`

udC1sud

= uf +E
−`

`

C1suddu, s29d

whereC1sud= fsu+ufdf1− fsudMgdu.

B. Exact border of ferromagnetic and spin glass phases

Let us first consider the exact border of two phasesJ0
=Îln 2. C1sud is a product of two monotonic functions, de-
creasingsone to the left, the other to the rightd from the point
u=−uf. We define an auxiliary functionFsud by the differen-
tial equation

F8sud = fsu + ufd. s30d

Using the second equation ins26d, we derive foruuu!l2

Fsu − ufd =E
0

u/l

dx
l

Îp
E

x

`

e−y2
dy. s31d

Let us denoteC2sud=f1− fsudMg and perform integration by
parts in Eq.s29d:

kln Zl = uf +E
−`

`

F8sudC2suddu

= uf + Fs`dC2s`d − Fs− `dC2s− `d

−E
−`

`

FsudC28suddu

= uf + fFs`d − Fs− ufdg − F8s− ufd

3E
−`

`

su + ufdC28suddu. s32d

We have truncated the expansion in degrees ofu+uf as
C28sud is similar to ad function near −uf. We usedC2s`d
=1, C2s−`d=0, andFs−ufde−`

` C28suddu=Fs−ufd. Then Eq.
s32d gives
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kln Zl − uf <
bÎN
Îp

E
0

`

dxE
x

`

exps− y2ddy, N1/2. s33d

Equations33d is one of the main results of our investigation.
It is obvious that in addition to the bulk term asymptotic in
free energy there is a subdominant term proportional to the
square root of the number of degrees. The importance of the
subdominant term in the entropy has been underlined inf4g,
and has been well analyzed inf5g. These authors suggested
identifying different universality classes of complex phe-
nomena by the subdominant terms of entropy. In the 1D spin
glass model with long-range interaction,kJij

2l,1/si − jd2,
they derived Eq.s33d for the entropy. Inf5g another object
with a similar subdominant entropy has been mentioned, i.e.,
languagef31g.

C. Small deviation from the border of two phases

Consider a small deviation from Eq.s26d fscaling is rea-
sonable, as we see in Eq.s35dg:

J0 = Îln 2 +
j0

ÎN
. s34d

Now the finite size correction is less than in Eq.s33d and
decreases exponentially at large values ofj0:

kln Zl − SÎln 2 +
j0

ÎN
DN , bÎN exps− j0

2d. s35d

Now calculate the magnetization. We define

m=K exps− bE1d

o
a

exps− bEadL . s36d

Using the identity 1/Z=e0
`dt e−tZ we derive form

m= −E
0

`

dt
d

dt
fsu + ufdfsudM = 1 −E

−`

`

du fsu + ufd
d

du
fMsud,

s37d

whereu=ln t. Using the second equation in Eq.s26d we de-
rive

m=
dkln Zl
bÎNdj0

=
1

Îp
E

−j0

`

exps− y2ddy, s38d

and for its differential we have

dm

dj0
=

1
Îp

exps− j0
2d. s39d

The last expression could be represented also as

1

bÎN

d2kln Zl
d2j0

=
1

Îp
exps− j0

2d. s40d

Thus, at the exact border SG-FMs j0=0d the dependence of
the magnetization on the externalsorderedd parameter is
maximal smaximum instability principled. This is likely a

characteristic property of every complex adaptive system.
One has an ordered external parameter to manage the system
as well as random parameterssthe choice of “ordered” and
“random” could be subjectived. There is an emergentsessen-
tially collectived property. If the interaction with the environ-
ment is defined via the emergent property, then the CAS
drifts to the maximal instability point with maximal depen-
dence of this emergent property on the ordered parameter.

One can considerdm/dj0 as some degree of complexity.
A close characteristic is the second derivative of the free
energy via ordered coupling, Eq.s40d. In our case, they co-
incide. However, there are possibly more complicated situa-
tions when they are different and both should be used.

Let us calculate the moments of Pa

;exps−bEad /od exps−bEdd. Using the identity

1
Îp
E

−`

`

exps− y2 − nly − eu−lyddy=
dnf0std

dtn
,

f0std ; fsln td. s41d

We have

kP1
2l =E

0

`

t dt f0stdM−1d2f0steJ0Nbd
dt2

=E
−j0

` e−x2

Îp
dx,

kPa
2l =E

0

`

t dt f0stdM−2d2f0std
dt2

f0steJ0Nbd,

kPaPgl =E
0

`

t dt f0steJ0Nbdf0stdM−3Sdf0std
dt

D2

,

o
a,g.1

kPaPgl = 1 −
1

Îp
E

−j0

`

exps− x2ddx. s42d

For T,Tc;2Îln 2:

o
a.1

kPa
2l = S1 −

1
Îp
E

−j0

`

exps− x2ddxDS1 −
T

Tc
D ,

o
a,g.1,aÞg

kPaPgl = S1 −
1

Îp
E

−j0

`

exps− x2ddxD T

Tc
. s43d

Define

C = kP1
2l o

a.1
kPa

2l. s44d

C takes the maximal value at the critical pointj0=0

C =
Tc − T

2Tc
. s45d

For largej0 we have thatC decreases exponentially:

C , exps− j0
2d. s46d

The more detailed investigation of thej0=0 case states
that
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kP1l =
1

2
, kP1

2l =
1

2
. s47d

We see thatP1=0, 1 with probabilities 1/2.
We can defineC as the edge of chaos parameter. At the

exact error threshold border it has a maximal value, equal to
1/2 at zero temperature, i.e., the probabilities of ordered and
random motions are equal.C decreases exponentially outside
the region. What is the advantage of our choice Eq.s44d over
another one,kp1loa.1kPal? Equations44d distinguishesb
→` as the optimal situation, and the last choice fails.

To defineC, we have actually used the Tsallis entropy at
q=2 f32g

Iq = −
So

r

pr
q − 1D

q − 1
. s48d

In f3g Gell-Mann and Lloyd assumed the connection ofIq
with systems at the edge of chaos.

III. DEFINITION OF COMPLEX ADAPTIVE PROPERTY
AND UNIVERSALITY CLASSES

A. Definition of complexity

Free energy is the fundamental object in statistical me-
chanics. The bulk free energy is proportional to the number
of particlessspinsd. It is well known that in the case of some
defects on geometrical manifoldsslines, surfacesd, in addi-
tion to the bulk term in the asymptote expression of free
energy, there are subdominant terms proportional to some
roots of N. Thus, the subdominant term in the free energy
could be identified with the existence of some structures
smuch more involved than simple geometrical defectsd in the
system. In our case of the REM, the formulation of the
model was homogeneous in space, but we got a square root
subdominant term. In a complex system we assume the fol-
lowing hierarchy: bulk motion and some structures above it.
The subdominant free energy is related to the structures. If
we are interested just in structure, we can ignore the bulk
free energysan analogy in the physics of surfaces: to inves-
tigate the surface free energy we certainly miss the bulk en-
ergyd. Therefore we have the following scheme.

sad We define the complexity as the subdominant free en-
ergy. We have seen that in the case of the error threshold via
the REM it scales as the square root of the number of spins.
We assume that it is the most important class of complex
phenomena, connected with living systems. In the complex-
ity phase the intermediate scale free energysor entropy, or
Kolmogorov complexityd becomes strong, and the subdomi-
nant term scales as the square root of the number of degrees,
Eqs.s33d and s35d.

What do we mean by the intermediate scale? There is a
minimal scalesultraviolet cutoffd and maximal scalesinfra-
red oned. The intermediate scale is just their geometric aver-
age. In f33g the statistics of heartbeats were investigated.
They found that healthy people can be differentiated by the
coarse-grained entropy at the intermediate scale, which is
coherent with the appearance of the middle scale free energy

in our case. Therefore the situation is coherent with the cri-
terion sad. The complexity in our definition is the free energy
on a higher hierarchy levelsconnected with the structuresd.
One should remember that the free energy itself is on the
second level of the hierarchy. The energy is on the ground
level. Due to thermodynamic motion, only its smaller part is
manageable on the macroscopic levelsonly the free energy
could be extracted as mechanical work while changing the
global parametersd. Therefore, complexity is a level on a
hierarchy of the following modalities: energy, free energy,
and subdominant free energy. Each higher level is more uni-
versal. It is explicit in the quantum field theory approach to
critical phenomenaf16g. Different renormalization schemes
can give different bulk free energies, but the same logarith-
mic subdominant one. Thus we observe a hierarchy of mo-
dalities sa noncategorical statement about reality, seef34gd.
In principle, the hierarchy could be continued, and at some
level life could appear. Our viewsrather statistical mechani-
cal than mathematicald is close to the one of Gell-Mann and
Lloyd in f3g, defining the system complexity as the “length
of highly compressed description of its regularities.”

Due to the above mentioned hierarchy, the identification
of complexity with a subdominant free energy is more uni-
versal than the entropy approach off4,5g. Sometimes the
existence of structure could be identified in entropy or Kol-
mogorov complexity subdominant terms as well. In our case
the free energy reveals a huge subdominant term, but not the
entropy.

We assume that other features of our toy model are char-
acteristic for complex adaptive systems.

sbd There is an emergent property, maximally unstable
under the change of ordered external parameters, Eq.s39d.
Sometimes it can be characterized as a second derivative of
free energy via an ordered parameter.

scd The probability of ordered and disordered motions
should be at the same levelflike Eqs.s45d and s47dg.

sdd The complex adaptive properties could be exponen-
tially damped in the case of even a small deviation of the
ordered parameter.

Let us discuss different complex systems, defining univer-
sality classes.

B. Critical theories

We assume that the subdominant term of free energy de-
scribes the number of real parameters of the system. Inf5g a
learning process for a model with finiteK parameters was
considered and a logarithmic subdominant term, proportional
to K, was found. For 2D critical theories we can take either
the total effective number of bosonic degreessconformal
chargecd, or the number of primary fields as the number of
parameters. According tof16g, nature has chosen the first
one, and the subdominant term of the free energy is propor-
tional to the conformal charge and to the logarithm of the
degrees of freedom.

We see that the complex phenomena analyzed in previous
sections correspond to another class of universality than the
models inf16g. In critical theoriesf16g magnetization disap-
pears at the transition pointscontrary to error threshold cased.
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Therefore, we admit that complex adaptive systems, while
having some scalingsfat tails in marketsd, could not be de-
scribed by critical theories.

In 2D percolation indices could be described by confor-
mal field theory. Therefore, the percolation belongs to the
class of critical theories. In our classification this situation is
as complex as the classf16g.

In the spin glass model of the REM Derrida found a loga-
rithmic subdominant free energy. Therefore, the model be-
longs to the class off16g.

C. Financial markets

One can apply our criteria to financial marketsf35g. To
analyze the financial time seriesystd sU.S. dollar–German
mark exchange rated the statistics of the price increment
yst+td−ystd has been considered and the probability density
function psx,td has been constructed from the empirical
data. A Fokker-Planck equation, where the role of time is
played by lnt, has been derived for the last distribution. We
see a diffusion in the scale lnt as well as a drift. Inf36g the
ratio R of the ordered motion ofy and the diffusion has been
calculated. It is the tail exponent ofy:Psyd,dy−s1+md f36g. In
practice,R=m,3–5. In thesituation, when the approach of
f35,36g is correct, the more complex situation corresponds to
the smaller values ofm. In the case of the error threshold
model, considered in this paper, the subdominant term is
larger in the regionR,1. Outside, it decreases exponentially
like the one in Eq.s46d.

For the markets something like this property can also be
observed. There are fundamentalist traders who act in a de-
terministic way and the noisy onesf37g. In our model, they
are similar to ordered and random couplings. In the case of
sbd the fundamentalists’ number is chosen to have a maximal
influence on the market global characteristics. In the usual
thermodynamics we have a fundamental notion of tempera-
ture, and the equilibrium is possible only when the tempera-
ture of different subsystems is the same. Now an edge of
chaos parameter for complex adaptive systems is introduced.
It is reasonable to assume that in the stable state it should be
the same for different parts of the marketsfor example, for
the traders and stocksd. In this way it could be possible to
predict future catastrophes. One can identify the edge of
chaos parameters also by considering a correlation matrix of
different stocks. According to the above mentioned data,
there are both deterministic and stochastic parts. It is very
important to identify the subdominant term in entropy by
considering block entropies of financial data.

D. Highly optimized tolerance design

This is the last crucial achievement of complex system
theory, related to the robustness of engineering design
f38,39g. In the simplest case one considers a forest fire model
on a 2D lattice. There are trees at any site of the lattice, and
there is a known probability of sparks. As a tree is fired, its
nearest neighbors are also fired. One constructs firebreaks
ssites without treesd to limit the size of the eventstotal num-
ber of fired treesd. The goal is to construct a robust scheme

against fire propagation for the given spark probability, using
a minimal area of firebreaks. Scaling laws for the distribution
of fire events have been found. The situation highly re-
sembles the error threshold case. Actually, inf39g the con-
nection of highly optimized tolerancesHOTd design with
source coding has been directly stated. In the error threshold
there is also scaling for the mean magnetizationm=1/2
+c/ÎN f22g. It has been assumed inf38,39g that self-
organized criticality SOC and HOT design are different
classes of universality. We can adduce another argument. In a
sandpile there is the analog of free energy, the number of
recurrent states of the sandpile process. It is the number of
spanning trees of the free-fermion model. Therefore the
sandpile belongs to the class of universalityf16g with central
chargec=−2 f10g. We have used an important principle: the
class of universality of the complex system should be the
same in all of its representations. A very interesting feature
of HOT design is that it gives a robustness against the origi-
nally given distribution of the noise. The robustness is very
fragile: there is a large probability for the total crushsgreat
fired in the case of a change of the original conditions. This
resembles propertysdd in the definition of complex adaptive
phenomenon. Inf40g a constraint optimization with limited
deviation sCOLDd has been suggested design to avoid the
large probability of total crush. They also mentioned the first
known example of a HOT-design-like situation. It is the clas-
sic problem of gambler’s ruin: optimizing the total return
leads to ruin with probability 1f41g. For a very complicated
complex system with many hierarchies, the full optimization
states a single simple principle for management of the sys-
tem, as in this case the essence of different hierarchies
should be the same. Only absolute optimization allows a full
transformation of the content from one hierarchy level to
another. This crucial feature has been lost in the COLD case.
I think that the choice of COLD can be successful only for
not too complicated systems. In the next section we will
discuss the related concept of antiresonance for complex
adaptive systems, exploring the propertysdd in our approach.

E. Markov models and random networks

There are a lot of applications of Markov models in com-
plex systems. Especially important are applications in bioin-
formatics f42g. There is some biological language in DNA
and proteins, and hidden Markov modelssthe transition be-
tween states of the system is observed in a probabilistic wayd
have been applied to model this language. One can investi-
gate the block entropiesSsNd for words withN letters in the
stream of data and define the subdominant term. Such inves-
tigation has been thoroughly done inf6g. At large N, in the
case of classic orderR, the Markov processSsNd gets an
exact linear asymptote atN.R. For the case of a hidden
Markov model a subdominant entropy, decreasing exponen-
tially with N, has been found. This is very important. Those
models, being very useful, do not share the class of univer-
sality of living systems, which we assume as corresponding
to the subdominant term,ÎN.

Networks are very popular in complex system research
f43,44g. How can these geometrical objects be classified into

ERROR THRESHOLD IN OPTIMAL CODING,… PHYSICAL REVIEW E 71, 016126s2005d

016126-7



universality classes? Inf45g has been introduced a statistical
mechanics approach to describe the properties of a graph
ensemble. The mean characteristics of the graph have been
fixed, while maximizing the entropy of the ensemble. Now
the number of pairs of vertices plays the role of the number
of degrees of freedom. The free energy can be defined. For
the case of a random graph there is no finite size correction
in free energy expression. Therefore, the random graph cor-
responds to the Markov model class of complexity. Unfortu-
nately I do not see a way to enlarge the method off45g to
scale-free networks.

F. Virus evolution near the error threshold

The evolution of the majority of virusessRNA genome
virusesd is described well by the Eigen modelf27g. This
brilliant model gives a simple and complete version of Dar-
win evolution theory. Information is represented here as a
chain of spins takingl=2 or l=4 values. There arelN dif-
ferent configurations with corresponding probabilitiespi , 1
ø i ølN. At any moment, the virus is giving offsprings with
some rate specific for his genomesfitnessd. Offsprings ran-
domly change their mother genome to other onessmuta-
tionsd. When the majority of individuals has a genome near
one configurations“wild” oned, then genetic information is
successfully transferred to future generations. Otherwise,
there is a flat distribution of individuals in the genome space.
It is interesting that the virus evolution is near the error
threshold. In “quasispecies theory”f46g sa virus population
with a distribution like a cloud around some “wild” genome
configurationd there are equivalents of energy, i.e., fitness,
and free energy, i.e., mean fitness, for the whole systemsfor
one configuration a product of fitness and errorless copying
probabilityd. All of these sselective abilitiesd can be derived
in this model just as a consequence of the Eigen equations.
During evolution, the population is located mainly in a ge-
nome with high selection ability. Considering the evolution
in dynamic environments, it is possible to define a different
kind of selective ability, like a higher form of free energy
scomplexity?d. This approach to defining complexity is a
quite objective one. We assume that it is possible to calculate
analytically also the ground state entropysincluding the sub-
dominant oned and define the complexity byf4,5g.

It could be possible to investigate some aspects of optimal
coding, impossible to do in an alternative way. Choosing as
the REM’s Hamiltonian a fitnesslike function, we can get
analytical dynamics for optimal codingsthe work is in
progressd. Thus, rigorous investigation of informational the-
oretical scomplexityd aspects of evolution models could be
very fruitful for both disciplines.

Virus evolution is often referred to as a typical example of
a complex adaptive system. Another famous example is the
immune system. Statistical mechanics has been successfully
applied to this casef47g. I do not see a direct analogy with
the error threshold phenomena here. But one should defi-
nitely choose a model from a high complexity class.

G. Sherrington-Kirkpatrick model

Usually one defines the logarithm of different ground
states f49g ssolutions of Thouless-Anderson-Palmer equa-

tionsd as a complexity. It is a reasonable characteristic to be
investigatedsalthough a very complicated oned. I think that
to identify the universality class of the model it is enough to
calculate finite size corrections of the free energy or energy.
Such calculations have been done for a Sherrington-
Kirkpatrick model f50g. The subdominant energy scales as
N1/3. Therefore, it is an additional class of complexity. For
different spin glasses other subdominant term scalings are
possible as well, and finite dimensional spin glasses are
likely to have another universality class. We have mentioned
the Sherrington-Kirkpatrick modelf48g, because it is con-
nected with neuron networks.

IV. ANTIRESONANCE IN COMPLEX SYSTEMS

A. Complex resonance

The concept of resonance is probably the most noticeable
phenomenon in nature, culture, and science. The close notion
of synchronization in complex systems is becoming more
and more popularf51g. We are going to analyze the idea of
resonance in complex systems, to look for the possibility of,
in some sense, the inverse situation with an exponential
damping of motionsantiresonanced. We suppose that this no-
tion will complement our view of complex systems in the
previous section.

Originally, the simplest resonance situation has been in-
vestigated in the mechanics of a classical deterministic sys-
tem with some resonance frequency, driven by an external
harmonic force. When two frequencies coincide, the reaction
of the system to an external force increases drastically. Even
in this simple case we can observe two features of the phe-
nomenon. Frequency is an essence of motion, and there is a
sharp peak in the ratio of output to force.

The next step was parametric resonance in classical me-
chanics. There is a hierarchy here. We observe a motion at
given values of parameters, and the resonance frequency de-
pends on the values of external parameters. If one changes
the external parameter with the same frequency as the fre-
quency of the pendulum, there appears the famous paramet-
ric resonance—the flow of energy from a higher level of the
hierarchy to a lower level. Let us generalize this situation to
other complex systems to define complex resonance.

If there is a hierarchy in the system, and states at different
hierarchic levels have some essencescomparable logically
with each otherd, generalized resonance happens when these
essences coincide. What about the essence of the state? In
classical mechanics, there is only one real number character-
izing the total state, i.e., frequency. In general one should
look for other total parameters of the system. In modern
physics these are the following: temperature in statistical me-
chanics, the replica system breaking scheme in spin glasses
sedge of chaos parameterd, and the wave function phase in
quantum mechanics.

The next famous example of such asgeneralized paramet-
ric resonanced situation is related to the Nishimori line in
disordered systemsf52,53g. A hierarchysquenched disorderd
is present here. Sometimes it is possible to introduce some
formal temperature to describe this disorder. If two tempera-
tures sthe real one for the spins and the formal one for the
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quenched disorderd coincide, the system reveals some inter-
esting properties, becoming maximally analytic in some
sense.

So we can define a hierarchy for the resonance. In the
trivial case, the system is not hierarchic, it is logically homo-
geneous. The more involved case corresponds to the situa-
tion with very different kinds of motions orsandd hierarchy.
It is reasonable to define the second case as a complex reso-
nance. In several situationssi.e., stochastic resonanced, when
it is impossible to define and compare clearly the essence of
a state, one considers a situation when there is a sharp peak
in the ratio output-input at an optimal value of the external
parameter.

An important moment should be mentioned regarding our
concept. If we consider some functional having different pa-
rameters, functions, and logical structures, and we optimize
it over the entire variablessin addition to some fixed group
of parameters or functionsd, it could be stated that the es-
sence of the whole system is the same as that of a fixed
group.

B. Antiresonance

Let me now analyze the resonance situation with the op-
posite goal: to use the high levels of hierarchy to achieve a
maximal negative effect. This is a situation not too rare in
living systems.

We define antiresonance as a situation, whens1d a reso-
nance is possible for some value of the external parameter;
s2d it is possible to define the opposite phase transformation
of the parameter; ands3d at the opposite phase values of the
parameter there is eithersad an exponential damping of a
motion orsbd a new featuresopposite in some sense to those
at the resonant parameter cased arising in a resonant way.

The phenomenon is very complex. Thus, we are investi-
gating the simplest models, trying to reveal those situations
in complex systems, when such a phenomenon is possible.
Let us consider the pendulum withxs0d=x0 ,x8s0d=0, when
the frequency varies with some small amplitudeh f54g:

d2x

dt2
= − w2f1 + h coss2wt + fdgx. s49d

Here h!1, and w is a frequency. Taking coss2wt+fd
=sins2wtd, we get an exponentially amplified solution:

xstd = expShw

4
tDfcosswtdg. s50d

Choosing coss2wt+fd=−sins2wtd, we have an exponential
damping

xstd = expS−
hw

4
tDfcosswtdg. s51d

For the original amplitudeA the damping periodT is

T ,
4 ln A

hw
. s52d

In this situation the picture is symmetricsboth amplification
and damping are possibled. The other situation is possible

with only resonant dampingslike the domino effectd.

C. Nishimori line

One considersf52,53g N spinssi with interaction Hamil-
tonian

H = − o
i1,…,ip

j i1,…,ip
si1

si2
,…,sip

. s53d

There is ap-spin interaction here; the couplingsj i1,…,ip
are

random quenched variables ±1 with probabilitys1+m0d /2
for the values 1 ands1−m0d /2 for the values −1. It is pos-
sible to write the following probability distribution:

Ps j i1,…,ip
d =

expsb0Ji1,…,ip
d

2 coshsb0d
. s54d

The parameterb0 resembles an inverse temperature. Using
the invariance of the Hamiltonian under the transformation

si → sivi, j i1,…,ip
→ j i1,…,ip

vi1
vi2

,…,vip
, s55d

in f52,53g the exact energy of the model atb0=b has been
calculated. Atb=b0 our system has the best ferromagnetic
properties in the sense that the number of up spins
oiksil / uksilu is maximal at the Nishimori temperaturef53g. In
the opposite phase, we can takeb=−b0. While the order
parameters are different in the ferromagnetic and antiferro-
magnetic phases, the free energy is the same in both models,
as Zs j ,bd=Zs j ,−bd for the Hamiltonians53d. For the odd
values ofp one has optimal properties for the configuration
si =−1. Thus, there is a trivial antiresonance according to our
definition. For the even values ofp si.e., p=2d and bonds on
the links of hypercubic lattices ind-dimensional space, there
is an antiferromagnetic orderingsan antiresonance situationd.

D. Antiresonance in complex systems

A search for antiresonance in stochastic resonancef55g is
a very interesting issue. The resonance is certainly a complex
one, when the deterministic harmonic motion has the same
period as the transition because of noise. To construct the
antiresonance is problematic, as stochastic resonance has no
phase to reverse the resonance situation. Inf56g a stochastic
resonance explanation for the crashes and bubbles in finan-
cial marketssusing the Ising spin modeld was considered.
There is no phase for the noise to be reversed in stochastic
resonance, but the information for the agents can certainly be
positive or negative, thus moving the market from the border
of two phases to one side.

During the last decade, the idea of evolution or develop-
ment at the edge of chaosf7,8g, related to complex adaptive
systems, was very popular. What about the antiresonance as-
pect of the origin of life? It is the case, at least, for the
hypercycle model by Eigen and Schusterf57g. One tries to
construct a self-replicating system that bypasses simple prob-
lems, i.e., mutations, but, unavoidably, parasite creatures ap-
pear. As a result, there is a chance to consume all the infor-
mation via those parasite creatures. We see, in some sense, a
resonance picture with a chance for antiresonance. Virus
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evolution is also often near the error thresholdsmutation
catastrophed f58g. At the top level of life there is the phenom-
enon of apostasis, when the cell can be killed by a simple
command.

Our point of view is the following: even if complex sys-
tems are walking at the edge of chaos and climbing the
mountains of fitness landscapessin case of biological evolu-
tiond, it is often a walk near the precipice. For evolution it is
not so dangerous, as only the survival of the species is cru-
cial. One should be much more careful with a rare or single
system, like humanity.

We observe the antiresonance phenomenon in history. It is
known from the experience of the history of mankind that in
tense situations when a category connected with some sym-
bol becomes urgentsparamountd the defying of that symbol
unavoidably leads to the reverse reactionsoften during the
three yearsd. Very dangerous is a situation when such phe-
nomenon proceeds widely over the world simultaneously in
many countriessglobal antiresonanced.

E. Complexity parameters and stability of complex systems

What parameters could be applied to analyze complex
systems? In addition to the edge of chaos parameter, reason-
able for error-threshold-like systems, we can use the Nishi-
mori temperature as a parameter. In principle, Parisi’s replica
symmetry scheme also could be considered as a complexity
parameter. For the stability of the complex system it is im-
portant that those parameters coincide in different sub-
systems or hierarchial levels.

An interesting example of a complexity parameter in pro-
tein physics is the protein design temperaturessee the review
f59gd. Here the HamiltonianHs j ,sd is a function ofj i samino
acid types in a sequenced and sl sconformationsd. The cou-
plings j have a distribution like the one in Eq.s54d:

Ps jd , expf− Hs j ,sdbdg, s56d

where s is some ferromagneticlike “native” configuration.
Perhaps the methodology of the Nishimori line could be ap-
plied to the protein case.

V. CONCLUSION

We have rigorously solved the error threshold for optimal
codes using the random energy model, calculating the mag-
netization and finite size corrections to the free energy. This
approach was applied in our previous work where many re-
sults of Shannon information theory about optimal coding
were derived. There is an alternative methodsreplica ap-
proach with Nishimiori lined, working well also in the case
of realistic low-density parity check codesf60g ssee the re-
view f26gd. The REM approach could not be applied directly
in the case of finite block coding, but it is much simpler. The
main results of information theory were derived in the REM
approach about 6–9 years before those found through alter-
native methods: error threshold for finite rate of information
transmissionf19g versusf61g, reliability exponentf25g ver-
sus f62g, data compressionf23g versusf63g. Multichannel
coding was analyzed first inf24g. It is very interesting to

check the universality class of codes with finite block length
f60g, optimal codes with a finite number spin interaction.
Unfortunately, the alternative method off62,63g could not be
applied here directly.

Carefully investigating error threshold phenomena in the
REM, we have found several criteria of complexity: Eqs.
s33d, s35d, s39d, s44d, and s46d, which could be applied for
complex adaptive systems. Inf4,5g it was already suggested
to consider the subdominant part of the entropy as a measure
of complexity. We have enlarged that idea, suggesting the
use of a subdominant part of the free energy as a measure of
complexity. It is more universal than the bulk free energy,
and could be considered as the next step in the hierarchy
energy–free energy–subdominant term in free energy. This
hierarchy could be continued. Complexity appears on the
third level; at some higher levels life could appear. We admit
that our approach includes a qualitative idea about the edge
of chaos: in the complex phase, the probabilities of ordered
and disordered motions are equalfEq. s44dg, and complexity
properties damp exponentially outside the error threshold
point fEqs.s35d, s39d, ands46dg. We adduced arguments that,
unlike SOC or ordinary critical theories, HOT design be-
longs to the error threshold universality class of complexity.
There are a few classes of subdominant term behavior: zero
or exponentially decreasing subdominant terms for Markov
and hidden Markov modelsf6g; logarithmic corrections for
critical theories f16g; cubic root corrections for the
Sherrington-Kirkpatrick model; square root corrections for
the error threshold, long-range SG modelf5g and, maybe,
language. First, a complexity class should be identified from
the empirical data, to model a complex phenomenon. As per-
colation or SOC models belong to the same universality class
f16g, it is improbable that they can describe financial mar-
kets. Originally, only SOC criticality was identified with the
qualitative idea of “edge of chaos.” But we see that the error
threshold class is higher than SOC, and this complexity class
is likely connected with lifelike systemsf7g. We have intro-
duced also the concept of antiresonance, a phenomenon, per-
haps, typical for the creationsand existenced of life and for
advanced complex adaptive systems.

We have suggested investigating, first, the main features
of complexity to identify the large universality classes. What
other characteristics could be used for the further character-
ization of complex phenomena? Perhaps the language of the
system with its grammar, or, in physical systems, the exis-
tence of local gauge invariance. In the case of the REM,
formulated as a spin model, there is a local gauge invariance
fsee Eq.s55dg. There is local scale invariance for the models
of f16g. Therefore the two theories could be connected, ac-
cording to our complexity analysis. This is really the case, as
has been proved inf64g. We hope that other applications of
this analysis are possible. The spin glass phase and error
threshold border in the REM reveal the advantage of the
subdominant free energy approach to complexity compared
with the subdominant entropy one. The latter, if used as a
complexity measure, produces lower classesf,Os1d instead
of ln N or ÎNg. We have used the free energy to define the
complexity. In general, when a direct statistical mechanics
formulation of the problem is impossible, one can use a vari-
able describing a manageable amount of motion on the mac-
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roscopic level. The context of the problem can contribute
greatly to making a proper choice. For example, in the Eigen
model the equivalent of energy is fitnessswith a minus signd.
Free energy is automatically defined as a negative selective
ability smean fitnessd of a group of configurations.

In Sec. IV the idea of the essence of a complex system
state was used several times. In the case of spin glasses, the
real state of the system is defined in the replica space with
some probability followed by projection to zero replicassin
Parisi’s theoryd. In the case of hidden Markov models the
state is not directly observable again, as we get information
via probabilistic processes. In quantitative linguistics, an ab-
stract linear space has been applied to catch the meaning of
the wordsf65g. Perhaps the first example is quantum me-
chanics: there is a unitary evolution of the state in Hilbert
space, and during the measurement we have some probabi-
listic results. In all those examples the state of the complex
system is not formulated directly via observables, but instead
in some hidden abstract space, where the interpretation of the
systemsits motiond is rather simplesthe formulation of spin
glass statistical physics in replica space is much easier than
in the zero replica limit, and formulation of the Schrödinger
equation is easier than a quantum theory of measurementd.
We assume that it is an important feature of complex sys-
tems: the real state of the system is hidden in abstract space,
and can be observed in reality only in a probabilistic way.
Therefore we suggest a “principle of expanded prereality:” to
solve a complex problem one should reformulate the prob-
lem in some internal, hidden, wider spaces“prereality”d, and
then return back to the observable spaces“reality” d in a
probabilistic way.

In view of our results, it is very important to look for
antiresonance phenomena in stochastic resonance. Unfortu-

nately, early attempts to find it have not been successfulf66g.
Another important problem is to identify the universality
class of turbulence. An accurate numerical analysis to iden-
tify the universality classf67g is likely possible for the case
of Burgers turbulence. According to the whole experience of
complex systems and our “prereality” principle, to succeed
in a turbulence solution one should formulate the problem in
a wider abstract space, and then return back to the observ-
able. It is very important to investigate the language models
f65g and latent semantic analysisf68,69g in our approach. As
we mentioned, the results off31g sby means of entropy
analysisd already support the idea that language belongs to
the error threshold class. The investigation of the semantic
class is much deeper. The singular value decomposition in
f65,68,69g qualitatively resembles the fracturing of couplings
into ferromagnetic and noisy ones.

Note added in proof.Recently, J. Crutchfield sent me
some of his articlesf70–72g. In Ref. f70g the Renyi entropy
has been applied to investigate the complexitysmuch before
Ref. f3gd. In Ref. f71g the edge of chaos phenomenon has
been investigated rigorously in dynamic systems; later the
edge of chaos situation has been clarified in cellular auto-
mataf72g. This suggests that the names of J. P. Crutchfield
and K. Young should be added to the list of the founders of
the edge of chaos phenomenon.
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